Arithmétique binaire

Un article de Wikipédia, l'encyclopédie libre.

L'arithmétique binaire est la manière dont on mène les calculs en base 2 (système binaire).

C'est un concept essentiel de l'informatique. En effet, les processeurs des ordinateurs sont composés de millions de transistors (imprimés sur un circuit électronique) qui chacun ne gère que des bits 0 (« le courant ne passe pas ») et 1 (« le courant passe »).

Un calcul informatique n'est donc qu'une suite d'opérations sur des paquets de 0 et de 1, appelés octets lorsqu'ils sont regroupés par 8.

Sommaire

[modifier] Codage binaire

Il existe différents systèmes numériques basés sur la représentation binaire.

[modifier] Numération de position

Le codage le plus courant est l'équivalent en base deux de la numération de position que nous utilisons quotidiennement en base 10.

[modifier] Représentation des entiers positifs

Pour trouver la représentation binaire d'un nombre, on le décompose en somme de puissances de 2. Par exemple avec le nombre dont la représentation décimale est 59 :

  59 = 1×32 + 1×16 + 1×8 + 0×4 + 1×2 + 1×1
  59 = 1×25 + 1×24 + 1×2³ + 0×2² + 1×21 + 1×20
  59 = 111011 en binaire

Avec N bits, ce système permet de représenter les nombres entre 0 et 2N-1. Il est donc possible de compter sur ses dix doigts jusqu'à 1023 (210-1) en binaire. Il suffit d'affecter à chaque doigt une valeur binaire (pouvant être représenté par un doigt plié).

Doigt                  Main            Puis. Valeur en
                                       de 2  numération
                                             décimale
Auriculaire   de la main droite levé   2^0        1
Annulaire                »             2^1   +    2
Majeur                   »             2^2   +    4
Index                    »             2^3   +    8
Pouce                    »             2^4   +   16
Pouce         de la main gauche levé   2^5   +   32
Index                    »             2^6   +   64
Majeur                   »             2^7   +  128
Annulaire                »             2^8   +  256
Auriculaire              »             2^9   +  512
                                            -------
                                      Somme  =1 023

(Pour mémoire                          2^10  =1 024)

Ceci confirme la formule

2^10-1=1 024-1
      =1 023

On remarque qu'avec 10 doigts on peut prendre en compte les 10 premières puissances de 2 s'échelonnant de 2^0 à 2^9 c'est-à-dire la somme des 10 premières puissances de 2].

[modifier] Représentation des entiers négatifs

Pour compléter la représentation des entiers, il faut pouvoir écrire des entiers négatifs. On ajoute pour cela à la représentation un bit de signe, placé en tête. Un bit de signe nul indique une valeur positive, un bit de signe positionné à un une valeur négative. Cette règle permet de rester cohérent avec le système de représentation des entiers positifs : il suffit d'ajouter un 0 en tête de chaque valeur.

[modifier] Complément à un

Ce codage, fort simple, consiste à inverser la valeur de chaque bit composant une valeur binaire.

Par exemple, pour obtenir -5 :

0101 valeur décimale 5
1010 complément à un

Le souci avec un tel système est qu'il y a toujours deux représentations de la valeur 0 pour un nombre de bit donné.

Icône de détail Article détaillé : Complément à un.

[modifier] Complément à deux

Afin de pallier ce défaut, on a introduit la représentation par complément à deux. Celle-ci consiste à réaliser un complément à un de la valeur, puis d'ajouter 1 au résultat.

Par exemple pour obtenir -5:

0101 codage de 5 en binaire
1010 complément à un
1011 on ajoute 1 : représentation de -5 en complément à deux

Ce codage a l'avantage de ne pas nécessiter de différenciation spéciale des nombres positifs et négatifs, et évite en particulier le problème d'ordinateurs anciens (Control Data 6600) qui avaient un « +0 » et un « -0 » dont il fallait faire comprendre aux circuits de tests que c'était le même nombre ! Voici une addition de -5 et +7 réalisée en complément à deux sur 4 bits :

-5        1011 
+7        0111
__        ____
 2    (1) 0010     (on 'ignore' la retenue)   

Avec n bits, ce système permet de représenter les nombres entre -2n-1 et 2n-1-1.

Icône de détail Article détaillé : Complément à deux.


[modifier] La soustraction

La soustraction en binaire se déroule de la même manière qu’en décimal.

Principe de base :

0 − 0 = 0
0 − 1 = 1 (avec retenue)
1 − 0 = 1
1 − 1 = 0

Exemple de soustraction :

    *   * * *   (les colonnes avec * contiennent des retenues)
  1 1 0 1 1 1 0
−     1 0 1 1 1
----------------
= 1 0 1 0 1 1 1

[modifier] Code de Gray ou binaire réfléchi

Ce codage permet de ne faire changer qu'un seul bit à la fois quand un nombre est augmenté d'une unité. Le nom du code vient de l'ingénieur américain Frank Gray qui déposa un brevet sur ce code en 1953. Monsieur Louis Gros publia en 1872 un opuscule où ce code était présenté pour la première fois en lien avec un casse-tête. Monsieur Gros était clerc de notaire à Lyon.

codage binaire classique Codage Gray ou binaire réfléchi
0 0000 0 0000
1 0001 1 0001
2 0010 2 0011
3 0011 3 0010
4 0100 4 0110
5 0101 5 0111
6 0110 6 0101
7 0111 7 0100

Pour passer d'une ligne à la suivante, on inverse le bit le plus à droite possible conduisant à un nombre nouveau.

Le nom de code binaire réfléchi vient d'une méthode de construction plus pratique pour choisir quel bit inverser quand on passe d'un nombre au suivant:

  • On choisit un code de départ: zéro est codé 0 et un est codé 1.
  • Puis, à chaque fois qu'on a besoin d'un bit supplémentaire, on symétrise les nombres déjà obtenus (comme une réflexion dans un miroir).
  • Enfin, on rajoute un 0 au début des "anciens" nombres, et un 1 au début des nouveaux nombres.

Exemple :

0 0          0  .0    0  00     0  .00     0  000
1 1          1  .1    1  01     1  .01     1  001
     miroir->------             2  .11     2  011
             2  .1    2  11     3  .10     3  010
             3  .0    3  10     ------- 
                                4  .10     4  110
                                5  .11     5  111
                                6  .01     6  101
                                7  .00     7  100

Une autre méthode de calcul permettant de passer d'un nombre de Gray au suivant, et qui présente l'avantage de ne pas nécessiter de connaître l'ensemble des nombres précédents est la suivante :

  • si le nombre de 1 est pair, alors le dernier chiffre doit être inversé
  • sinon, il faut repérer le 1 situé le plus à droite et inverser le chiffre situé immédiatement à gauche de celui-ci.

Ce code est surtout utilisé pour des capteurs de positions, par exemple sur des règles optiques. En effet, si on utilise le code binaire standard, lors du passage de la position un (01) à deux (10), permutation simultanée de 2 bits, il y a un risque de passage transitoire par trois (11) ou zéro (00), ce qu'évite le code de Gray.

On remarquera que le passage du maximum (sept sur 3 bits) à zéro se fait également en ne modifiant qu'un seul bit. Ceci permet par exemple d'encoder un angle, comme la direction d'une girouette : 0=Nord, 1=Nord-Est, 2=Est, ... 7=Nord-Ouest. Le passage de Nord-Ouest à Nord se fait également sans problème en ne changeant qu'un seul bit (voir Roue de codage).

Le décodage des signaux lumineux d'un axe de souris mécanique est un décodage de code de Gray à 2 bits (décodage différentiel dans ce cas, car ce que l'on veut obtenir n'est pas la valeur décodée mais les transitions ±1 mod 4 de la valeur décodée).

Le code Gray sert également dans les tables de Karnaugh utilisées lors de la conception de circuits logiques.

Algorithme de codage d'un nombre n en code gray g :

 g = n ^(n >> 1)


Algorithme de décodage rapide pour des mots de 64 bits (pour des mots de 32 bits, remplacer 32 par 16) :

 long grayInverse(long n) {
        long ish, ans, idiv;
        ish = 1;
        ans = n;
        while(true) {
                idiv = ans >> ish;
                ans ^= idiv;
                if (idiv <= 1 || ish == 32) 
                        return ans;
                ish <<= 1; // double le nb de shifts la prochaine fois
        }
   }

[modifier] Décimal codé binaire (« binary coded decimal », ou BCD)

Ce codage consiste à représenter chacun des chiffres de la numérotation décimale sur 4 bits:

1994 =  0001    1001   1001   0100
      1×1000 + 9×100 + 9×10 + 4×1

Il présente l'avantage de simplifier la conversion avec la notation décimale.

Avec n bits (n multiple de 4), il est possible de représenter les nombres entre 0 et 10n/4-1. Soit approximativement entre 0 et 1.778n-1. Le BCD est un code redondant, en effet certaines combinaisons ne sont pas utilisées (comme 1111 par exemple).

Cette représentation évite par construction tous les problèmes gênants de cumul d'arrondi qui interviendraient lors de la manipulation de grands nombres dépassant la taille des circuits en arithmétique entière et obligent à recourir au flottant. Il est cependant possible de manipuler des nombres à précision arbitraire en utilisant un codage plus efficace que le BCD.

Il existe des variantes du codage BCD :

  • code Aiken où 0, 1, 2, 3, 4 sont codés comme en BCD et 5, 6, 7, 8, 9 sont codés de 1011 à 1111. Il permet d'obtenir le complément à 9 en permutant les 1 et les 0.
  • codage binaire excédant 3 qui consiste à représenter le chiffre à coder + 3.
Icône de détail Article détaillé : Binary coded decimal.

[modifier] Applications

[modifier] Théorie de l'information

En théorie de l'information, on peut utiliser le bit comme unité de mesure de l'information. La théorie elle-même est indifférente à la représentation des grandeurs qu'elle utilise.

[modifier] Logique

La logique classique est une logique bivalente: une proposition est soit vraie, soit fausse. Il est donc possible de représenter la vérité d'une proposition par un chiffre binaire. On peut par exemple modéliser les opérations de l'arithmétique binaire à l'aide de l'algèbre de Boole.

L'algèbre de Boole représente un cas très particulier d'usage des probabilités ne faisant intervenir que les seules valeurs de vérité 0 et 1. Voir Théorème de Cox-Jaynes.

[modifier] Informatique

Le binaire est utilisé en informatique car il permet de modéliser le fonctionnement des composants de commutation comme le TTL ou le CMOS. La présence d'un seuil de tension au bornes des transistors, en négligeant la valeur exacte de cette tension, représentera 0 ou 1. Par exemple le chiffre 0 sera utilisé pour signifier une absence de tension à 0,5V près, et le chiffre 1 pour signifier sa présence à plus de 0,5V. cette marge de tolérance permet de pousser les cadences des microprocesseurs à des valeurs atteignant sans problème (hormis d'échauffement) plusieurs gigahertz. Ne sachant pas techniquement réaliser des composants électroniques à plus de deux états stables (0 ou plus de 0,5V), on n'utilise que la logique (bivalente) et donc le système binaire.

En informatique, la représentation binaire permet de clairement manipuler des bits : chaque chiffre binaire correspond à un bit. La représentation binaire nécessitant l'usage de beaucoup de chiffres (même pour des nombres assez petits), ce qui entraînerait d'importants problèmes de lisibilité et donc de risques d'erreur de transcription pour les programmeurs on lui préfère pour eux une représentation parfois octale ou plus fréquemment hexadécimale. La quasi totalité des microprocesseurs actuels travaillant avec des mots de 8, 16, 32 ou 64 bits, la notation hexadécimale permet de manipuler l'information par paquets de 4 bits (contre 3 pour la notation octale plus populaire du temps des premiers mini-ordinateurs DEC à 12 ou 36 bits).

[modifier] Voir aussi

[modifier] Articles connexes

[modifier] Liens externes

Wikipedia HTML 2008 in other languages

100 000 +

Česká (Czech)  •  English  •  Deutsch (German)  •  日本語 (Japanese)  •  Français (French)  •  Polski (Polish)  •  Suomi (Finnish)  •  Svenska (Swedish)  •  Nederlands (Dutch)  •  Español (Spanish)  •  Italiano (Italian)  •  Norsk (Norwegian Bokmål)  •  Português (Portuguese)  •  Română (Romanian)  •  Русский (Russian)  •  Türkçe (Turkish)  •  Українська (Ukrainian)  •  中文 (Chinese)

10 000 +

العربية (Arabic)  •  Български (Bulgarian)  •  Bosanski (Bosnian)  •  Català (Catalan)  •  Cymraeg (Welsh)  •  Dansk (Danish)  •  Ελληνικά (Greek)  •  Esperanto  •  Eesti (Estonian)  •  Euskara (Basque)  •  Galego (Galician)  •  עברית (Hebrew)  •  हिन्दी (Hindi)  •  Hrvatski (Croatian)  •  Magyar (Hungarian)  •  Ido  •  Bahasa Indonesia (Indonesian)  •  Íslenska (Icelandic)  •  Basa Jawa (Javanese)  •  한국어 (Korean)  •  Latina (Latin)  •  Lëtzebuergesch (Luxembourgish)  •  Lietuvių (Lithuanian)  •  Latviešu (Latvian)  •  Bahasa Melayu (Malay)  •  Plattdüütsch (Low Saxon)  •  Norsk (Norwegian Nynorsk)  •  فارسی (Persian)  •  Sicilianu (Sicilian)  •  Slovenčina (Slovak)  •  Slovenščina (Slovenian)  •  Српски (Serbian)  •  Basa Sunda (Sundanese)  •  தமிழ் (Tamil)  •  ไทย (Thai)  •  Tiếng Việt (Vietnamese)

1 000 +

Afrikaans  •  Asturianu (Asturian)  •  Беларуская (Belarusian)  •  Kaszëbsczi (Kashubian)  •  Frysk (Western Frisian)  •  Gaeilge (Irish)  •  Interlingua  •  Kurdî (Kurdish)  •  Kernewek (Cornish)  •  Māori  •  Bân-lâm-gú (Southern Min)  •  Occitan  •  संस्कृत (Sanskrit)  •  Scots  •  Tatarça (Tatar)  •  اردو (Urdu) Walon (Walloon)  •  יידיש (Yiddish)  •  古文/文言文 (Classical Chinese)

100 +

Nehiyaw (Cree)  •  словѣньскъ (Old Church Slavonic)  •  gutisk (Gothic)  •  ລາວ (Laos)