Dipôle électrique

Un article de Wikipédia, l'encyclopédie libre.

Le dipôle électrique est un conducteur électrique possédant deux bornes.

Sommaire

[modifier] Caractéristique d'un dipôle électrique

C'est la courbe représentative, soit de la fonction u_D = f(i_D) \,, soit de la fonction inverse i_D = f^{-1}(u_D) \, avec

  • u_D  \, : tension aux bornes du dipôle,
  • i_D \, : intensité du courant qui traverse le dipôle.

[modifier] Puissance consommée par un dipôle électrique

Un dipôle traversé par un courant d'intensité i  \, et dont la tension à ses bornes est u  \, met en jeu une puissance p  \, telle que p = u \cdot i \,
Cette puissance correspond à la puissance consommée lorsque u et i sont fléchés selon la convention récepteur (en sens opposé) et à la puissance fournie lorsqu'ils sont fléchés avec la convention générateur.

[modifier] Classification des dipôles

[modifier] Dipôles passifs et actifs

  • Les dipôles passifs ont une caractéristique qui passe par l'origine (u = 0 ; i = 0). Ils ne peuvent que consommer de la puissance électrique, et cette puissance est dissipée par effet Joule.
  • Les dipôles actifs ont une caractéristique qui ne passe pas par l'origine et une partie de la puissance qu'ils mettent en jeu ne correspond pas à de l'effet Joule.

[modifier] Dipôles linéaires

Cette dénomination ambiguë recouvre deux sens :

  • dipôles dont la caractéristique est une droite,
  • dipôles pour lesquels la fonction f : uD = f (iD) est une fonction différentielle à coefficient constant.

Pour les dipôles passifs non linéaires on définit pour un point de fonctionnement donné :

  • la résistance statique : RS = U / I
  • la résistance dynamique : RD = dU / dI

[modifier] Dipôles symétriques

Dipôles dont la caractéristique est symétrique par rapport à l'origine.Pour ces dipôles, le sens de branchement est sans importance.

[modifier] Impédance d'un dipôle

En régime sinusoïdal de courant le comportement des dipôles dépend de la fréquence f donc de la pulsation ω = 2 π f

On défini l'impédance d'un dipôle par :

Zω = Uω / Iω, avec

  • Uω : valeur efficace de la tension de pulsation ω aux bornes du dipôle
  • Iω : valeur efficace de l'intensié du courant de pulsation ω à travers le dipôle.

[modifier] Dipôles linéaires idéaux

Ce sont des dipôles virtuels qui répondent parfaitement à des équations mathématiques à coefficient constant. Les dipôles réels sont, soit assimilés à ces dipôles idéaux, soit considérés comme des associations particulières de ces dipôles idéaux.

[modifier] Dipôles passifs idéaux

Ils sont aux nombres de 3

[modifier] Les résistances pures

Elles respectent exactement la relation u = R i. avec R constant quelles que soient les conditions d'utilisation.

En régime sinusoïdal leur impédance complexe est donc égale à R

[modifier] Les inductances pures

Elles respectent exactement la relation

u =L \cdot \frac{di}{dt} avec L constant quelques soient les conditions d'utilisations.

En régime sinusoïdal leur impédance complexe est donc égale à j.Lω

[modifier] Les condensateurs parfaits

Ils respectent exactement la relation

i =C \cdot \frac{du}{dt} avec C constant quelques soient les conditions d'utilisation.

En régime sinusoïdal leur impédance complexe est donc égale à 1/j.Cω

[modifier] Dipôles actifs idéaux

[modifier] Les sources idéales de tension

Elles délivrent une tension continue ou variable au cours du temps totalement indépendante du courant qui les traverse. On les nomme aussi générateur de Thévenin

[modifier] Les sources idéales de courant

Elles imposent d'être traversées par un courant continu ou variable au cours du temps totalement indépendant de la tension à leurs bornes. On les nomme aussi générateur de Norton

[modifier] Propriétés physiques des dipôles linéaires

  • Lorsqu'un ensemble de ces dipôles est alimenté en régime sinusoïdal de tension, l'intensité qui le traverse est également sinusoïdale et de même fréquence.
  • Le facteur de puissance d'un ensemble de dipôles linéaires est toujours égal au cosinus du déphasage du courant par rapport à la tension (le cos φ)

Wikipedia HTML 2008 in other languages

100 000 +

Česká (Czech)  •  English  •  Deutsch (German)  •  日本語 (Japanese)  •  Français (French)  •  Polski (Polish)  •  Suomi (Finnish)  •  Svenska (Swedish)  •  Nederlands (Dutch)  •  Español (Spanish)  •  Italiano (Italian)  •  Norsk (Norwegian Bokmål)  •  Português (Portuguese)  •  Română (Romanian)  •  Русский (Russian)  •  Türkçe (Turkish)  •  Українська (Ukrainian)  •  中文 (Chinese)

10 000 +

العربية (Arabic)  •  Български (Bulgarian)  •  Bosanski (Bosnian)  •  Català (Catalan)  •  Cymraeg (Welsh)  •  Dansk (Danish)  •  Ελληνικά (Greek)  •  Esperanto  •  Eesti (Estonian)  •  Euskara (Basque)  •  Galego (Galician)  •  עברית (Hebrew)  •  हिन्दी (Hindi)  •  Hrvatski (Croatian)  •  Magyar (Hungarian)  •  Ido  •  Bahasa Indonesia (Indonesian)  •  Íslenska (Icelandic)  •  Basa Jawa (Javanese)  •  한국어 (Korean)  •  Latina (Latin)  •  Lëtzebuergesch (Luxembourgish)  •  Lietuvių (Lithuanian)  •  Latviešu (Latvian)  •  Bahasa Melayu (Malay)  •  Plattdüütsch (Low Saxon)  •  Norsk (Norwegian Nynorsk)  •  فارسی (Persian)  •  Sicilianu (Sicilian)  •  Slovenčina (Slovak)  •  Slovenščina (Slovenian)  •  Српски (Serbian)  •  Basa Sunda (Sundanese)  •  தமிழ் (Tamil)  •  ไทย (Thai)  •  Tiếng Việt (Vietnamese)

1 000 +

Afrikaans  •  Asturianu (Asturian)  •  Беларуская (Belarusian)  •  Kaszëbsczi (Kashubian)  •  Frysk (Western Frisian)  •  Gaeilge (Irish)  •  Interlingua  •  Kurdî (Kurdish)  •  Kernewek (Cornish)  •  Māori  •  Bân-lâm-gú (Southern Min)  •  Occitan  •  संस्कृत (Sanskrit)  •  Scots  •  Tatarça (Tatar)  •  اردو (Urdu) Walon (Walloon)  •  יידיש (Yiddish)  •  古文/文言文 (Classical Chinese)

100 +

Nehiyaw (Cree)  •  словѣньскъ (Old Church Slavonic)  •  gutisk (Gothic)  •  ລາວ (Laos)