Dualité de Hodge

Un article de Wikipédia, l'encyclopédie libre.

En algèbre linéaire, l'opérateur de Hodge est un opérateur sur l'algèbre extérieure d'un espace vectoriel euclidien orienté. Il est usuellement noté par une étoile qui précède l'élément auquel l'opérateur est appliqué. On parle ainsi d'étoile de Hodge. Si la dimension de l'espace est n, l'opérateur établit une correspondance entre les k-vecteurs et les (n-k)-vecteurs, appelée dualité de Hodge.

En géométrie différentielle, l'opérateur de Hodge peut être étendu aux fibrés vectoriels riemanniens orientés. Appliqué à l'espace cotangent des variétés riemanniennes orientées, l'opérateur de Hodge permet de définir une norme L2 sur l'espace des formes différentielles. La codifférentielle se définit alors comme l'adjoint forme de la dérivée extérieure. Cette codifférentielle intervient notamment dans la définition des formes harmoniques.

Sommaire

[modifier] Définition

[modifier] Opérateur de Hodge sur les k-vecteurs

Soit E espace vectoriel euclidien orienté de dimension finie n. Les sous-espaces ΛkE et ΛnkE des k-vecteurs et des n-k vecteurs sont de même dimension, à savoir Cnk. Il est possible de définir un isomorphisme linéaire noté * entre ces deux espaces et appelé opérateur de Hodge.

Pour toute base orthonormale directe e1,e2,...,en,

*(e_1\wedge e_2\wedge ... \wedge e_k)= e_{k+1}\wedge e_{k+2}\wedge ... \wedge e_n.


Il s'étend ensuite par linéarité à toute l'algèbre extérieure. Cette définition est peu satisfaisante puisqu'elle fait intervenir des bases et pose un problème de compatibilité. Elle a néanmoins l'avantage de bien décrire le comportement de l'opérateur de Hodge sous forme de complétion de base orthonormale directe.

Une définition plus convenable consiste à faire intervenir la forme volume ω de l'espace vectoriel euclidien orienté E. Le dual de Hodge s'obtient en effectuant la contraction

\;*\;X = \langle\omega,X\rangle

[modifier] Dualité

Pour un k-vecteur \eta \in \Lambda^k (E) de l'espace E de dimension n, appliquer deux fois l'opérateur de Hodge donne l'identité, au signe près

**\eta=(-1)^{k(n-k)}\;\eta

[modifier] Applications

[modifier] Produit scalaire sur l'algèbre extérieure

L'opérateur de Hodge permet de définir un produit scalaire sur l'algèbre extérieure par la relation

\zeta\wedge *\eta = \langle\zeta| \eta \rangle\;*1=\langle\zeta| \eta \rangle\;\overline{\omega}

Pour ce produit scalaire, les k-vecteurs obtenus par produit extérieur à partir de la base orthnormale de E constituent une base orthonormale de ΛE.

[modifier] Codifférentielle

[modifier] Extension aux espaces quadratiques

Il est possible de définir un opérateur de Hodge pour un espace quadratique. La formule de dualité est alors modifiée pour prendre en compte la signature de la forme quadratique sur E. Précisément, on multiplie le second membre par le discriminant de cette forme quadratique. Ainsi si n=4 et si la signature est (+,−,−,−) ou (−,+,+,+), l'exposant est k(n-k)+1.

[modifier] Références

[modifier] Ouvrages

[modifier] Notes et références

Autres langues

Wikipedia HTML 2008 in other languages

100 000 +

Česká (Czech)  •  English  •  Deutsch (German)  •  日本語 (Japanese)  •  Français (French)  •  Polski (Polish)  •  Suomi (Finnish)  •  Svenska (Swedish)  •  Nederlands (Dutch)  •  Español (Spanish)  •  Italiano (Italian)  •  Norsk (Norwegian Bokmål)  •  Português (Portuguese)  •  Română (Romanian)  •  Русский (Russian)  •  Türkçe (Turkish)  •  Українська (Ukrainian)  •  中文 (Chinese)

10 000 +

العربية (Arabic)  •  Български (Bulgarian)  •  Bosanski (Bosnian)  •  Català (Catalan)  •  Cymraeg (Welsh)  •  Dansk (Danish)  •  Ελληνικά (Greek)  •  Esperanto  •  Eesti (Estonian)  •  Euskara (Basque)  •  Galego (Galician)  •  עברית (Hebrew)  •  हिन्दी (Hindi)  •  Hrvatski (Croatian)  •  Magyar (Hungarian)  •  Ido  •  Bahasa Indonesia (Indonesian)  •  Íslenska (Icelandic)  •  Basa Jawa (Javanese)  •  한국어 (Korean)  •  Latina (Latin)  •  Lëtzebuergesch (Luxembourgish)  •  Lietuvių (Lithuanian)  •  Latviešu (Latvian)  •  Bahasa Melayu (Malay)  •  Plattdüütsch (Low Saxon)  •  Norsk (Norwegian Nynorsk)  •  فارسی (Persian)  •  Sicilianu (Sicilian)  •  Slovenčina (Slovak)  •  Slovenščina (Slovenian)  •  Српски (Serbian)  •  Basa Sunda (Sundanese)  •  தமிழ் (Tamil)  •  ไทย (Thai)  •  Tiếng Việt (Vietnamese)

1 000 +

Afrikaans  •  Asturianu (Asturian)  •  Беларуская (Belarusian)  •  Kaszëbsczi (Kashubian)  •  Frysk (Western Frisian)  •  Gaeilge (Irish)  •  Interlingua  •  Kurdî (Kurdish)  •  Kernewek (Cornish)  •  Māori  •  Bân-lâm-gú (Southern Min)  •  Occitan  •  संस्कृत (Sanskrit)  •  Scots  •  Tatarça (Tatar)  •  اردو (Urdu) Walon (Walloon)  •  יידיש (Yiddish)  •  古文/文言文 (Classical Chinese)

100 +

Nehiyaw (Cree)  •  словѣньскъ (Old Church Slavonic)  •  gutisk (Gothic)  •  ລາວ (Laos)