Home Page - YouTube Channel



Vitamin C - Simple English Wikipedia, the free encyclopedia

Vitamin C

From the Simple English Wikipedia, the free encyclopedia that anyone can change

This article's English may not be simple
The English used in this article may not be easy for everybody to understand.

You can help Wikipedia by making this page or section simpler.

ascorbic acid
ascorbic acid

Vitamin C is a vitamin. It is also called ascorbic acid. It dissolves in water. It is found in fresh fruits and berries and green vegetables. Vitamin C helps wounds heal. Lack of vitamin C can cause a sickness called scurvy, where the gums in the mouth bleed easily and wounds won't heal.

Lack of Vitamin C used to be a big health problem on long ocean trips by ship where supplies of fresh fruit were quickly used up. Many people would die from scurvy on such trips.

Most animals can make their own vitamin C, but some animals cannot. Some of those which cannot make their own vitamin C, are guinea pigs, humans, and apes.

Vitamin C was first found in 1928, and in 1932 it was proved to stop the sickness called scurvy.

Potato with peel contains 20 mg/100 of vitamin C
Potato with peel contains 20 mg/100 of vitamin C

Through history the need for people to eat fresh plant food to help them get through long sieges or long sea trips was known by some wise people but was often forgotten.

The first attempt to prove this idea was by a ship's doctor in the British Royal Navy called James Lind, who at sea in May 1747 gave some crew members lemon juice as well as their normal ships food, while others continued on normal food alone.

The results showed that lemons prevented the disease. Lind wrote up his work and published it in 1753.

Lind's work was slow to be noticed. It was 1795 before the British navy adopted lemon or lime juice as food for sailors.

As well as lemons, limes and oranges; sauerkraut, salted cabbage, malt, and soup were tried with different effects.

James Cook relied on sauerkraut to prevent the disease on his long voyages of exploration.

It was believed that only humans got scurvy but in 1907, Alex Holst and Theodore Frohlich, two Norwegian chemists found that guinea pigs could also get it if not given fresh food.

In 1928 the Arctic explorer Vilhjalmur Stefansson proved that Eskimo (Inuit) people are able to avoid scurvy with almost no plant food in their diet by eating raw meat.

In 1912 the Polish American scientist Casimir Funk had the idea of the name of vitamins for the things present in food in small amounts which are essential to health. He named the unknown thing which prevented scurvy, Vitamin C.

From 1928 to 1933, the Hungarian research team of Joseph L Svirbely and Albert Szent-Gyorgyi, and separately the American Charles Glen King, first took out vitamin C from food and showed it to be an acid they called ascorbic acid.

In 1933/1934, the British chemists Sir Walter Norman Haworth and Sir Edmund Hirst, and separately the Polish Tadeus Reichstein, had success in making the vitamin. It was the first to be made by man. It then became possible to make lots of vitamin C cheaply in factories. Haworth was awarded the 1937 Nobel Prize for Chemistry for this work.

In 1959 the American J.J. Burns showed that the reason why some animals get scurvy is because their liver cannot make just one chemical enzyme that all other animals have.

Contents

[change] Sources

[change] Plant sources

Citrus fruits such as lime, lemon, orange, andgrapefruit) are good sources of vitamin C.

Other foods that are good sources of vitamin C include papaya, broccoli, brussels sprouts, blackcurrants, strawberries, cauliflower, spinach, cantaloupe, green peppers, and kiwifruit.

The following table is to give an idea of how much vitamin c there is in different plant foods. Each individual fruit will vary.

The amount of vitamin C in foods of plant origin depends on the kind of plant, the kind of soil where it grew, how much rain and sun it got , the length of time since it was picked, and how it was stored since then. Cooking food destroys vitamin C.

Table Showing Relative Abundance of Vitamin C in Principal Fruits and some Raw Vegetables
Fruit mg vitamin C per 100 grams of fruit Fruit Continued mg vitamin C per 100 grams of fruit Fruit Continued mg vitamin C per 100 grams of fruit
CamuCamu 2800 Lemon 40 Grape 10
Rose hip 2000 Melon, cantaloupe 40 Apricot 10
Acerola 1600 Cauliflower 40 Plum 10
Jujube 500 Grapefruit 30 Watermelon 10
Baobab 400 Raspberry 30 Banana 9
Blackcurrant 200 Tangerine/ Mandarin oranges 30 Carrot 9
Guava 100 Passion fruit 30 Avocado 8
Kiwifruit 90 Spinach 30 Crabapple 8
Broccoli 90 Cabbage Raw green 30 Peach 7
Loganberry 80 Lime 20 Apple 6
Redcurrant 80 Mango 20 Blackberry 6
Brussels sprouts 80 Melon, honeydew 20 Beetroot 5
Lychee 70 Raspberry 20 Pear 4
Persimmon 60 Tomato 10 Lettuce 4
Papaya 60 Blueberry 10 Cucumber 3
Strawberry 50 Pineapple 10 Fig 2
Orange 50 Pawpaw 10 Bilberry 1

[change] Animal sources

Most species of animals synthesise their own vitamin C. It is therefore not a vitamin for them. Synthesis in achieved through a sequence of enzyme driven steps, which convert glucose to ascorbic acid. It is carried out either in the kidneys, in reptiles and birds, or the liver, in mammals and perching birds. The loss of an enzyme concerned with ascorbic acid synthesis has occurred quite frequently in evolution and has affected most fish, many birds; some bats, guinea pigs and most but not all primates, including Man. The mutations have not been lethal because ascorbic acid is so prevalent in the surrounding food sources.

It was only realised in the 1920s that some cuts of meat and fish are also a source of vitamin C for humans. The muscle and fat which make up the modern western diet are however poor sources. As with fruit and vegetables cooking destroys the vitamin C content.

Table Showing Relative Abundance of Vitamin C in Foods of Animal Origin
Food of animal origin mg vitamin C per 100 grams food Food of animal origin (contd) mg vitamin C per 100 grams food Food of animal mg vitamin C per 100 grams food
Calf liver (raw) 36 Chicken liver (fried ) 13 Goats milk (fresh) 2
Beef liver (raw) 31 Lamb liver (Fried) 12 Beef steak (fried) 0
Oysters (raw) 30 Lamb heart (roast) 11 Hens egg (raw ) 0
Cod Roe (fried) 26 Lamb tongue (stewed) 6 Pork Bacon (fried) 0
Pork liver (raw) 23 Human milk (fresh) 4 Calf veal cutlet (fried) 0
Lamb brain (boiled) 17 Cows milk (fresh) 2 Chicken leg (roast) 0

[change] Artificial chemical synthesis

Vitamin C is produced from glucose by two main routes. The Reichstein process developed in the 1930s uses a single pre-fermentation followed by a purely chemical route. The more modern Two-Step fermentation process was originally developed in China in the 1960s, uses additional fermentation to replace part of the later chemical stages. Both processes yield approximately 60% vitamin C from the glucose feed.

In 1934, the Swiss pharmaceutical company Hoffmann-La Roche was the first to mass produce synthetic vitamin C, under the brand name of Redoxon. Main producers today are BASF/ Takeda, Roche, Merck and the China Pharmaceutical Group Ltd of the People's Republic of China.

[change] Functions of vitamin C in the body

  • As a participant in hydroxylation, vitamin C is needed for the production of collagen in the connective tissue. These fibres are ubiquitous throughout the body; providing firm but flexible structure. Some tissues have a greater percentage of collagen, especially: skin, mucous membranes, teeth, and bones.
  • Vitamin C is required for synthesis of dopamine, noradrenaline, and adrenaline in the nervous system or in the adrenal glands.
  • Vitamin C is also needed to synthesise carnitine, important in the tranfer of energy to the cell mitochondria.
  • It is a strong antioxidant.
  • The tissues with greatest percentage of vitamin C—over 100 times the level in blood plasma—are the adrenal glands, pituitary, thymus, corpus luteum, and retina.
  • The brain, spleen, lung, testicle, lymph nodes, liver, thyroid, small intestinal mucosa, leukocytes, pancreas, kidney, and salivary glands usually have 10 to 50 times the concentration present in plasma.

[change] Vitamin C deficiency

Lack of ascorbic acid in the daily diet leads to a disease called scurvy, a form of avitaminosis that is characterized by:

[change] Daily requirement

A healthy person on a balanced western diet should be able to get all the vitamin C needed to prevent the symptoms of scurvy from their daily diet. People who smoke, those under stress and women in pregnancy have a slightly higher requirement.

The amount of vitamin C needed to avoid deficiency symptoms and maintain health has been set by variously national agencies as follows:

  • 40 mg per day UK Food Standards Agency
  • 60-95 mg per day US Food and Nutrition Board 2001 revision.

Some researchers have calculated the amount needed for an adult human to achieve similar blood serum levels as Vitamin C synthesising mammals as follows:

  • 200 mg per day - Linus Pauling Institute and US National Institutes of Health (NIH) Recommendation.
  • 3000 mg per day - Vitamin C Foundation's recommendation.
  • 6000-12000 mg per day–Thomas Levy , Colorado Integrative Medical Centre recommendation.
  • 6000-18000 mg per day - Linus Pauling's daily recommendation

High doses (thousands of mg) may result in diarrhoea, which is harmless if the dose is reduced immediately. Some researchers (Cathcart) claim the onset of diarrhoea to be an indication of where the body’s true vitamin C requirement lies.

The small size of the ascorbic acid molecule means the kidneys cannot retain it in the body. Quite a low level in the blood serum will cause traces to be present in the urine. All vitamin C synthesising mammals have traces in the urine at all times.

In April 1998 Nature reported alleged carcinogenic and teratogenic effects of excessive doses of vitamin C. This was given great prominence in the world's media. The effects were noted in test tube experiments and on only two of the 20 markers of free radical damage to DNA. They have not been supported by further evidence from living organisms. Almost all mammals manufacture their own vitamin C in amounts equivalent to human doses of thousands of milligrams per day. Large amounts of the vitamin are used in orthomolecular medicine and no harmful effects have been observed even in doses of 10,000 mg per day or more.

[change] Therapeutic uses

Vitamin C is needed in the diet to prevent scurvy. It also has a reputation for being useful in the treatment of colds and flu. The evidence to support this idea, however, is ambiguous and the effect may depend on the dose size and dosing regime. The Vitamin C foundation (1) recommends 8 grams of vitamin C every half hour in order to show an effect on the symptoms of a cold infection that is in progress.

[change] Vitamin C advocacy

Fred R. Klenner, a doctor in Reidsville, North Carolina reported in 1949 that poliomyelitis yielded to vitamin C.

Nobel Prize winning chemist Linus Pauling began actively promoting vitamin C in the 1960s as a means to greatly improve human health and resistance to disease.

A minority of medical and scientific opinion continues to see vitamin C as being a low cost and safe way to treat infectious disease and to deal with a wide range of poisons. A megadose of one-half gram per pound of body weight (one gram per kilogram of body weight) per day of sodium ascorbate salt has been found of theraputic use in both human and veterinary treatments.

A meta-study into the published research on effectiveness of ascorbic acid in the treatment of infectious disease and toxins was conducted, in 2002, by Thomas Levy, Medical Director of the Colorado Integrative Medical Center in Denver. It claimed that overwhelming scientific evidence exists for its therapeutic role.

Some vitamin C advocates say that vitamin C cannot be used therapeutically because it cannot now be patented. Pharmaceutical companies are unwilling to research or promote something that will make them little money.

Wikipedia HTML 2008 in other languages

100 000 +

Česká (Czech)  •  English  •  Deutsch (German)  •  日本語 (Japanese)  •  Français (French)  •  Polski (Polish)  •  Suomi (Finnish)  •  Svenska (Swedish)  •  Nederlands (Dutch)  •  Español (Spanish)  •  Italiano (Italian)  •  Norsk (Norwegian Bokmål)  •  Português (Portuguese)  •  Română (Romanian)  •  Русский (Russian)  •  Türkçe (Turkish)  •  Українська (Ukrainian)  •  中文 (Chinese)

10 000 +

العربية (Arabic)  •  Български (Bulgarian)  •  Bosanski (Bosnian)  •  Català (Catalan)  •  Cymraeg (Welsh)  •  Dansk (Danish)  •  Ελληνικά (Greek)  •  Esperanto  •  Eesti (Estonian)  •  Euskara (Basque)  •  Galego (Galician)  •  עברית (Hebrew)  •  हिन्दी (Hindi)  •  Hrvatski (Croatian)  •  Magyar (Hungarian)  •  Ido  •  Bahasa Indonesia (Indonesian)  •  Íslenska (Icelandic)  •  Basa Jawa (Javanese)  •  한국어 (Korean)  •  Latina (Latin)  •  Lëtzebuergesch (Luxembourgish)  •  Lietuvių (Lithuanian)  •  Latviešu (Latvian)  •  Bahasa Melayu (Malay)  •  Plattdüütsch (Low Saxon)  •  Norsk (Norwegian Nynorsk)  •  فارسی (Persian)  •  Sicilianu (Sicilian)  •  Slovenčina (Slovak)  •  Slovenščina (Slovenian)  •  Српски (Serbian)  •  Basa Sunda (Sundanese)  •  தமிழ் (Tamil)  •  ไทย (Thai)  •  Tiếng Việt (Vietnamese)

1 000 +

Afrikaans  •  Asturianu (Asturian)  •  Беларуская (Belarusian)  •  Kaszëbsczi (Kashubian)  •  Frysk (Western Frisian)  •  Gaeilge (Irish)  •  Interlingua  •  Kurdî (Kurdish)  •  Kernewek (Cornish)  •  Māori  •  Bân-lâm-gú (Southern Min)  •  Occitan  •  संस्कृत (Sanskrit)  •  Scots  •  Tatarça (Tatar)  •  اردو (Urdu) Walon (Walloon)  •  יידיש (Yiddish)  •  古文/文言文 (Classical Chinese)

100 +

Nehiyaw (Cree)  •  словѣньскъ (Old Church Slavonic)  •  gutisk (Gothic)  •  ລາວ (Laos)