Énergie potentielle mécanique

Un article de Wikipédia, l'encyclopédie libre.

L'énergie potentielle mécanique est une énergie qui est échangée par un corps lorsqu'il se déplace tout en étant soumis à une force conservative. Elle est exprimée en Joules (c'est-à-dire en Newton mètre, ou kg.m2.s − 2). Cette énergie potentielle, définie à une constante arbitraire près, ne dépend que de la position du corps dans l'espace. Cette énergie est appelée potentielle car elle peut être emmagasinée par un corps et peut ensuite être transformée par exemple en énergie cinétique lorsque le corps est mis en mouvement.

De manière plus précise la variation d'énergie potentielle d'un corps lorsqu'il se déplace entre deux points est l'opposé du travail fourni par la force à laquelle il est soumis entre ces deux points. Ainsi le travail d'une force conservative vérifie la relation:

δWF = − dEp

Un exemple simple est celui d'un corps terrestre tenu en hauteur (et donc possédant une énergie potentielle de pesanteur du fait de sa hauteur) qui, une fois lâché, transforme cette énergie potentielle en énergie cinétique quand sa vitesse augmente lors de sa chute

Sommaire

[modifier] Généralités

Chaque force conservative donne naissance à une énergie potentielle. On peut ainsi distinguer :

L'énergie potentielle est définie à une constante additive près. Celle-ci n'a aucune influence sur les résultats puisque l'énergie potentielle est utilisée dans des opérations de dérivation (calcul d'une force conservative) ou de variation (calcul d'un travail). Ces deux opérations faisant disparaître la constante, le choix de cette dernière est donc purement arbitraire et sa détermination se fait généralement de façon à simplifier les calculs.

[modifier] Utilisation de l'énergie potentielle

Le calcul de l'énergie potentielle puis l'utilisation de l'expression de l'énergie mécanique peut permettre la détermination de l'équation du mouvement du système. Cette méthode est souvent plus judicieuse que l'utilisation du principe fondamental de la dynamique.

Méthode énergétique pour la résolution du mouvement du pendule simple :

On a comme paramètre θ, l'angle que fait le pendule avec la verticale et l la longueur du fil.

On se place dans le repère cylindrique (0,\vec{U_r},\vec{U_{\theta}}).

Pendule simple
Pendule simple
  • L'énergie cinétique du système vaut :

E_c = \frac {1}{2} .m.l^2.\dot{\theta}^2

  • L'énergie potentielle de pesanteur vaut :

E_{pe} = m.g.l.(1-cos(\theta)) \!

  • On calcul l'énergie potentielle de la tension du fil :

\delta W_T = \vec{T} \cdot \vec{dr} = -T.\vec{U_r} \cdot l.d \theta . \vec{U_{\theta}} = 0

Donc la tension du fil ne travaille pas, son énergie potentielle est nulle, et toutes les forces sont conservatives.

  • On écrit l'expression de l'énergie mécanique :

E_m = E_c + E_{pe} = \frac {1}{2} .m.l^2.\dot{\theta}^2 +m.g.l.(1-cos(\theta))

toutes les forces étant conservatives, alors l'énergie mécanique se conserve.

Donc en dérivant l'expression de l'énergie mécanique on obtient l'expression :

m.l^2.\dot{\theta}.\ddot{\theta} +m.g.l.\dot{\theta}.sin(\theta) = 0

Donc, l.\ddot{\theta}+g.sin(\theta) = 0

On obtient ainsi l'équation du mouvement :

\ddot{\theta}+ \frac {g}{l}.sin(\theta) = 0

[modifier] Condition d'équilibre

À partir de la relation entre le travail et l'énergie potentielle on obtient la relation suivante, avec \vec{u} le vecteur caractérisant le mouvement:

\ \delta W_F = \vec{F} \cdot \vec{du} = F \times du \times cos(\widehat{fu})= -dE_p

On a ainsi : F \times cos(\widehat{fu})= -\frac{dE_p}{du}

Dans le cas où le système est soumis à cette seule force, on sait d'après les lois de Newton que le système est en équilibre si

\vec{F}=\vec{0} (et le moment des forces est nul).

On en déduit une condition d'équilibre pour un système possédant une énergie potentielle :

\frac{dE_p}{du} = 0
Puits d'énergie potentielle
Puits d'énergie potentielle

Le système est donc en équilibre quand son énergie potentielle admet des minimums et des maximums locaux.

On peut alors différencier les positions d'équilibre stables et instables en fonction que l'énergie potentielle est maximale ou minimale.

On peut aussi soulever les notions de :

  • puits d'énergie potentielle lorsque le graphe de l'énergie potentielle en fonction du paramètre décrivant le mouvement admet un puits.

Si le système n'a pas assez d'énergie mécanique pour sortir du puits, il est contraint à rester entre deux positions et peut éventuellement osciller.

  • barrière d'énergie potentielle lorsque l'énergie potentielle tend vers l'infini quand le système s'approche d'une certaine position. Le système ne peut alors pas aller au delà de cette position et est contraint de revenir en arrière.

[modifier] Exemple

Considérons un système composé d'une masse m soumise à l'action de la gravité et suspendue à un ressort de raideur k. Dans ce cas, l'énergie potentielle du système est égale à la somme d'une énergie potentielle de pesanteur m g x et d'une énergie potentielle élastique k x2/2.

E_p =m\, g\, x+ \begin{matrix} \frac{1}{2} \end{matrix} k\, x^2
Système masse-ressort en équilibre sous l'action de la gravité
Énergie potentielle

Énergie potentielle du système masse-ressort en fonction de la position de la masse

En considérant l'axe \vec{i} vertical dirigé vers le bas, la condition d'équilibre donne alors :

\vec{\nabla} E_p = \frac{dE_p }{dx} \,\vec{i} = ( m\, g + k\, x ) \,\vec{i} = \vec{0}

dont on déduit la condition d'équilibre :

x = - \frac{m\, g}{k}

Comme on peut le voir sur le graphique plus haut, cette position d'équilibre correspond au minimum de l'énergie potentielle du système, c'est donc une position d'équilibre stable.

[modifier] Voir aussi

Wikipedia HTML 2008 in other languages

100 000 +

Česká (Czech)  •  English  •  Deutsch (German)  •  日本語 (Japanese)  •  Français (French)  •  Polski (Polish)  •  Suomi (Finnish)  •  Svenska (Swedish)  •  Nederlands (Dutch)  •  Español (Spanish)  •  Italiano (Italian)  •  Norsk (Norwegian Bokmål)  •  Português (Portuguese)  •  Română (Romanian)  •  Русский (Russian)  •  Türkçe (Turkish)  •  Українська (Ukrainian)  •  中文 (Chinese)

10 000 +

العربية (Arabic)  •  Български (Bulgarian)  •  Bosanski (Bosnian)  •  Català (Catalan)  •  Cymraeg (Welsh)  •  Dansk (Danish)  •  Ελληνικά (Greek)  •  Esperanto  •  Eesti (Estonian)  •  Euskara (Basque)  •  Galego (Galician)  •  עברית (Hebrew)  •  हिन्दी (Hindi)  •  Hrvatski (Croatian)  •  Magyar (Hungarian)  •  Ido  •  Bahasa Indonesia (Indonesian)  •  Íslenska (Icelandic)  •  Basa Jawa (Javanese)  •  한국어 (Korean)  •  Latina (Latin)  •  Lëtzebuergesch (Luxembourgish)  •  Lietuvių (Lithuanian)  •  Latviešu (Latvian)  •  Bahasa Melayu (Malay)  •  Plattdüütsch (Low Saxon)  •  Norsk (Norwegian Nynorsk)  •  فارسی (Persian)  •  Sicilianu (Sicilian)  •  Slovenčina (Slovak)  •  Slovenščina (Slovenian)  •  Српски (Serbian)  •  Basa Sunda (Sundanese)  •  தமிழ் (Tamil)  •  ไทย (Thai)  •  Tiếng Việt (Vietnamese)

1 000 +

Afrikaans  •  Asturianu (Asturian)  •  Беларуская (Belarusian)  •  Kaszëbsczi (Kashubian)  •  Frysk (Western Frisian)  •  Gaeilge (Irish)  •  Interlingua  •  Kurdî (Kurdish)  •  Kernewek (Cornish)  •  Māori  •  Bân-lâm-gú (Southern Min)  •  Occitan  •  संस्कृत (Sanskrit)  •  Scots  •  Tatarça (Tatar)  •  اردو (Urdu) Walon (Walloon)  •  יידיש (Yiddish)  •  古文/文言文 (Classical Chinese)

100 +

Nehiyaw (Cree)  •  словѣньскъ (Old Church Slavonic)  •  gutisk (Gothic)  •  ລາວ (Laos)