Champ équiprojectif

Un article de Wikipédia, l'encyclopédie libre.

Dans un espace affine euclidien E, un champ de vecteurs (\overrightarrow{V_P})_{P \in E} est équiprojectif si :

\forall P \in E, \forall Q \in E, (\overrightarrow{V_P} | \overrightarrow{PQ}) = (\overrightarrow{V_Q} | \overrightarrow{PQ})

(\;|\;) désigne le produit scalaire.

Il existe alors un endomorphisme antisymétrique u tel que :

\forall P \in E, \forall Q \in E, \overrightarrow{V_Q} = \overrightarrow{V_P} + u(\overrightarrow{PQ)}.

Sommaire

[modifier] Démonstration

[modifier] Antisymétrie

Soit O un point arbitraire de E. Pour tout vecteur \overrightarrow{x}, il existe un unique point P tel que \overrightarrow{x} = \overrightarrow{OP} et on définit u par u(\overrightarrow{x}) = \overrightarrow{V_P} - \overrightarrow{V_O}.

Montrons que, pour tous vecteurs \overrightarrow{x} = \overrightarrow{OP} et \overrightarrow{y} = \overrightarrow{OQ}, on a :

(u(\overrightarrow{x}) | \overrightarrow{y}) = - (\overrightarrow{x} | u(\overrightarrow{y}))

ce qui prouve l'antisymétrie de u.

On a en effet :

(u(\overrightarrow{x}), \overrightarrow{y}) = (\overrightarrow{V_P} - \overrightarrow{V_O}, \overrightarrow{OQ}) = (\overrightarrow{V_P}, \overrightarrow{OQ}) - (\overrightarrow{V_O}, \overrightarrow{OQ})
= (\overrightarrow{V_P}, \overrightarrow{OQ}) - (\overrightarrow{V_Q}, \overrightarrow{OQ}) en utilisant l'équiprojectivité du champ V
= (\overrightarrow{V_P}, \overrightarrow{OP} + \overrightarrow{PQ}) - (\overrightarrow{V_Q}, \overrightarrow{OQ})
= (\overrightarrow{V_P}, \overrightarrow{OP}) + (\overrightarrow{V_P}, \overrightarrow{PQ}) - (\overrightarrow{V_Q}, \overrightarrow{OQ})
= (\overrightarrow{V_P}, \overrightarrow{OP}) + (\overrightarrow{V_Q}, \overrightarrow{PQ}) - (\overrightarrow{V_Q}, \overrightarrow{OQ}) en utilisant de nouveau l'équiprojectivité.

Si on échange les rôles de \overrightarrow{x} et \overrightarrow{y}, on obtiendra :

(\overrightarrow{x}, u(\overrightarrow{y})) = (u(\overrightarrow{y}), \overrightarrow{x}) = (\overrightarrow{V_Q}, \overrightarrow{OQ}) + (\overrightarrow{V_P}, \overrightarrow{QP}) - (\overrightarrow{V_P}, \overrightarrow{OP})

On obtient bien :

(u(\overrightarrow{x}), \overrightarrow{y}) = - (\overrightarrow{x}, u(\overrightarrow{y}))

[modifier] Linéarité

On déduit de l'antisymétrie que u est linéaire. En effet, pour tout \overrightarrow{x}, \overrightarrow{y}, λ, on a :

(u(\lambda \overrightarrow{x}), \overrightarrow{y}) = - (\lambda \overrightarrow{x}, u(\overrightarrow{y})) = - \lambda (\overrightarrow{x}, u(\overrightarrow{y})) = \lambda (u(\overrightarrow{x}), \overrightarrow{y}) = (\lambda u(\overrightarrow{x}), \overrightarrow{y})

Cette égalité étant vraie pour tout \overrightarrow{y}, on en déduit que :

u(\lambda \overrightarrow{x}) = \lambda u(\overrightarrow{x})

On procède de même pour montrer que :

u(\overrightarrow{x}+\overrightarrow{x'}) = u(\overrightarrow{x})+u(\overrightarrow{x'})

[modifier] Cas de la dimension 3, torseur

Dans une base orthonormée directe, u, étant un endomorphisme antisymétrique, possède une matrice antisymétrique

\begin{pmatrix}0 & -c & b\\
c & 0 & -a\\
-b & a & 0 \\
\end{pmatrix}

Si on nomme \overrightarrow {\Omega} le vecteur de composantes \begin{pmatrix}a \\ b \\ c\end{pmatrix}, alors la matrice précédente est celle de l'application \overrightarrow x \to \overrightarrow \Omega \wedge \overrightarrow x.

On a donc \forall \overrightarrow{x}, u(\overrightarrow{x}) = \overrightarrow{\Omega} \wedge \overrightarrow{x} et donc

\overrightarrow{V_Q} = \overrightarrow{V_P} + \overrightarrow{\Omega} \wedge \overrightarrow{PQ}

(\overrightarrow{V_P})_{P \in E} est le champ des moments d'un torseur de résultante \overrightarrow{\Omega}.

[modifier] Exemple

L'exemple typique de champ équiprojectif en dimension 3 est le champ des vitesses d'un solide en mouvement. En effet, si P et Q sont deux points du solides, et si on note d la distance entre P et Q, on a :

\| \overrightarrow{PQ}\|^2 = d^2 = (\overrightarrow{PQ} | \overrightarrow{PQ})

et en dérivant par rapport au temps :

<\overrightarrow{V_Q} - \overrightarrow{V_P} | \overrightarrow{PQ}> = 0

\overrightarrow{V} désigne la vitesse en un point.

Le champ des vitesses est donc un torseur. Le vecteur \overrightarrow{\Omega} s'appelle vecteur instantané de rotation.

[modifier] Voir aussi

Wikipedia HTML 2008 in other languages

100 000 +

Česká (Czech)  •  English  •  Deutsch (German)  •  日本語 (Japanese)  •  Français (French)  •  Polski (Polish)  •  Suomi (Finnish)  •  Svenska (Swedish)  •  Nederlands (Dutch)  •  Español (Spanish)  •  Italiano (Italian)  •  Norsk (Norwegian Bokmål)  •  Português (Portuguese)  •  Română (Romanian)  •  Русский (Russian)  •  Türkçe (Turkish)  •  Українська (Ukrainian)  •  中文 (Chinese)

10 000 +

العربية (Arabic)  •  Български (Bulgarian)  •  Bosanski (Bosnian)  •  Català (Catalan)  •  Cymraeg (Welsh)  •  Dansk (Danish)  •  Ελληνικά (Greek)  •  Esperanto  •  Eesti (Estonian)  •  Euskara (Basque)  •  Galego (Galician)  •  עברית (Hebrew)  •  हिन्दी (Hindi)  •  Hrvatski (Croatian)  •  Magyar (Hungarian)  •  Ido  •  Bahasa Indonesia (Indonesian)  •  Íslenska (Icelandic)  •  Basa Jawa (Javanese)  •  한국어 (Korean)  •  Latina (Latin)  •  Lëtzebuergesch (Luxembourgish)  •  Lietuvių (Lithuanian)  •  Latviešu (Latvian)  •  Bahasa Melayu (Malay)  •  Plattdüütsch (Low Saxon)  •  Norsk (Norwegian Nynorsk)  •  فارسی (Persian)  •  Sicilianu (Sicilian)  •  Slovenčina (Slovak)  •  Slovenščina (Slovenian)  •  Српски (Serbian)  •  Basa Sunda (Sundanese)  •  தமிழ் (Tamil)  •  ไทย (Thai)  •  Tiếng Việt (Vietnamese)

1 000 +

Afrikaans  •  Asturianu (Asturian)  •  Беларуская (Belarusian)  •  Kaszëbsczi (Kashubian)  •  Frysk (Western Frisian)  •  Gaeilge (Irish)  •  Interlingua  •  Kurdî (Kurdish)  •  Kernewek (Cornish)  •  Māori  •  Bân-lâm-gú (Southern Min)  •  Occitan  •  संस्कृत (Sanskrit)  •  Scots  •  Tatarça (Tatar)  •  اردو (Urdu) Walon (Walloon)  •  יידיש (Yiddish)  •  古文/文言文 (Classical Chinese)

100 +

Nehiyaw (Cree)  •  словѣньскъ (Old Church Slavonic)  •  gutisk (Gothic)  •  ລາວ (Laos)