Composition de fonctions

Un article de Wikipédia, l'encyclopédie libre.

En mathématiques, la composition de fonctions (ou composition d'applications) est un procédé qui consiste, à partir de deux fonctions, d'en construire une nouvelle. Pour cela on utilise les images de la première fonction comme arguments pour la seconde (à condition que cela ait un sens). On parle alors de fonction composée (ou d'application composée).

Sommaire

[modifier] Définition formelle

Soient X, Y et Z trois ensembles quelconques. Soient deux fonctions f:X\to Y et g:Y \to Z. Si l'ensemble d'arrivée de f est inclus dans l'ensemble de départ de g (c'est-à-dire si f(X) \subset Y), on définit alors la composée de g par f, notée g \circ f par

\forall x \in X,\ (g\circ f)(x)=g[f(x)].

On applique ici f à l'argument x, puis on applique g au résultat.

On se retrouve donc avec une nouvelle fonction g \circ f: X \to Z.

La notation g \circ f se lit « g rond f », « f suivie de g » ou encore « g après f ». On note parfois g\circ f(x) pour (g \circ f)(x).

[modifier] Exemple d'incompatibilité des domaines

Soient les deux fonctions :

\begin{matrix} f: & \mathbb R_+ & \rightarrow & \mathbb R \\ & x & \mapsto & \sqrt{x} \end{matrix}

et

 \begin{matrix} g:&\mathbb R & \rightarrow & \mathbb R \\ & x & \mapsto & -x \end{matrix}

Ici, le domaine d'arrivée de g est \R. Or le domaine de départ de f est \R_+ (il n'existe pas de nombre réel tel que son carré soit strictement négatif). La fonction f\circ g n'a donc pas de sens ici. On peut cependant faire un abus de notation en notant f\circ g la composition de fonctions en supposant que le domaine de départ de g est seulement \R_-.

[modifier] Propriétés

Ici on ne se préoccupe pas des problèmes de compatibilité des domaines des fonctions considérées.

  • La composition de fonctions n'est généralement pas commutative :
f \circ g \ne g \circ f
 f \circ ( g \circ h ) = ( f \circ g ) \circ h
  • La composition de fonctions n'est généralement pas distributive (sur un opérateur quelconque \star) :
f \circ (g \star h) \ne (f \circ g) \star (f \circ h)
  • Si la fonction g est continue en x0 et la fonction f est continue en g(x0) alors  f \circ g est continue en x0.
  • Composition de deux fonctions f et g strictement monotones ( le sens de variation obéit à une sorte de règle des signes):
    • si f et g ont même sens de variation, leur composée est strictement croissante;
    • si f et g ont des sens de variation différents, leur composée est strictement décroissante.
  • Dérivée d'une composition de fonctions dérivables :
(f \circ g)' = (f'\circ g) \cdot g'
Voir l'article théorème de dérivation des fonctions composées.
 (g \circ f)^{-1} = f^{-1} \circ g^{-1}

[modifier] Puissances fonctionnelles

On conserve les notations ci-dessus. Si Y \subset X alors f peut être composée avec elle-même; et la composée est notée f2. Ainsi

f^2=f \circ f
 f ^3= f \circ f \circ f

Et de manière plus générale:

 \forall n \in \N^*, f^n=\underbrace{f \circ \ldots \circ f}_{n\ \mathrm{fois}}

On pose

f^0=\operatorname{Id}_X

\operatorname{Id}_X est l'application identité de l'ensemble X.

Une extension de cette notation avec des exposants entiers négatifs peut être définie, à condition de supposer la fonction f bijective de X dans lui-même. Ainsi, f − 1 désigne l'application réciproque et pour tout entier n strictement négatif, fn, est la composée de f − 1 par elle-même n fois.

Attention à ne pas confondre cette notation avec la puissance d'une fonction pour la multiplication des applications. Par exemple sin2 est la fonction \sin \times \sin qui vérifie

\forall x \in \R,\ \sin^2(x) = \sin(x)\times \sin(x)

Il y a aussi une confusion possible entre l'inverse d'une fonction pour la multiplication et l'application réciproque.

[modifier] Autre notation

Au milieu du XXe siècle, quelques mathématiciens trouvèrent que la notation g \circ f portait à confusion et décidèrent d'utiliser xf pour f(x) et xfg pour (g \circ f)(x). Ils ne furent pas suivis et cette notation ne se rencontre que dans certains vieux livres.

[modifier] Voir aussi

Opération binaire
numérique fonctionnelle en ensemble ordonné structurelle
élémentaire

+ addition
soustraction
× multiplication
÷ division
^ puissance

arithmétique

div quotient euclidien
mod reste euclidien
PGCD
PPCM

combinatoire

( ) coefficient binomial
A arrangement

composition
convolution
ensemble de parties

réunion
\ complémentation
intersection
Δ différence symétrique

ordre total

min minimum
max maximum

treillis

borne inférieure
borne supérieure

ensembles

× produit cartésien
union disjointe
^ puissance ensembliste

groupes

somme directe
produit libre
produit en couronne

modules

produit tensoriel
Hom homomorphismes
Tor torsion
Ext extensions

arbres

enracinement

variétés connexes

# somme connexe

espaces pointés

bouquet
smash produit
joint

vectorielle
(.) produit scalaire
produit vectoriel
algébrique
[,] crochet de Lie
{,} crochet de Poisson
produit extérieur
homologique
cup-produit
• produit d'intersection
séquentielle
+ concaténation
logique booléenne
ET (conjonction) OU (disjonction) OU exclusif IMP (implication) EQV (coïncidence)

Wikipedia HTML 2008 in other languages

100 000 +

Česká (Czech)  •  English  •  Deutsch (German)  •  日本語 (Japanese)  •  Français (French)  •  Polski (Polish)  •  Suomi (Finnish)  •  Svenska (Swedish)  •  Nederlands (Dutch)  •  Español (Spanish)  •  Italiano (Italian)  •  Norsk (Norwegian Bokmål)  •  Português (Portuguese)  •  Română (Romanian)  •  Русский (Russian)  •  Türkçe (Turkish)  •  Українська (Ukrainian)  •  中文 (Chinese)

10 000 +

العربية (Arabic)  •  Български (Bulgarian)  •  Bosanski (Bosnian)  •  Català (Catalan)  •  Cymraeg (Welsh)  •  Dansk (Danish)  •  Ελληνικά (Greek)  •  Esperanto  •  Eesti (Estonian)  •  Euskara (Basque)  •  Galego (Galician)  •  עברית (Hebrew)  •  हिन्दी (Hindi)  •  Hrvatski (Croatian)  •  Magyar (Hungarian)  •  Ido  •  Bahasa Indonesia (Indonesian)  •  Íslenska (Icelandic)  •  Basa Jawa (Javanese)  •  한국어 (Korean)  •  Latina (Latin)  •  Lëtzebuergesch (Luxembourgish)  •  Lietuvių (Lithuanian)  •  Latviešu (Latvian)  •  Bahasa Melayu (Malay)  •  Plattdüütsch (Low Saxon)  •  Norsk (Norwegian Nynorsk)  •  فارسی (Persian)  •  Sicilianu (Sicilian)  •  Slovenčina (Slovak)  •  Slovenščina (Slovenian)  •  Српски (Serbian)  •  Basa Sunda (Sundanese)  •  தமிழ் (Tamil)  •  ไทย (Thai)  •  Tiếng Việt (Vietnamese)

1 000 +

Afrikaans  •  Asturianu (Asturian)  •  Беларуская (Belarusian)  •  Kaszëbsczi (Kashubian)  •  Frysk (Western Frisian)  •  Gaeilge (Irish)  •  Interlingua  •  Kurdî (Kurdish)  •  Kernewek (Cornish)  •  Māori  •  Bân-lâm-gú (Southern Min)  •  Occitan  •  संस्कृत (Sanskrit)  •  Scots  •  Tatarça (Tatar)  •  اردو (Urdu) Walon (Walloon)  •  יידיש (Yiddish)  •  古文/文言文 (Classical Chinese)

100 +

Nehiyaw (Cree)  •  словѣньскъ (Old Church Slavonic)  •  gutisk (Gothic)  •  ລາວ (Laos)