Couple (physique)

Un article de Wikipédia, l'encyclopédie libre.

Pour les articles homonymes, voir Couple.

Sommaire

[modifier] Définition

On appelle couple tout système d'actions mécaniques dont la résultante \vec{R} est nulle et le moment résultant \vec{M}_0 par rapport à un point O est non nul.

Remarque : ce moment est alors indépendant du point O, comme démontré ci-dessous.

[modifier] Propriété fondamentale du couple

[modifier] Rappel : moment d'une force

On rappelle que le moment par rapport à un point O d'une force dont le point d'application est au point M est défini par :

 \vec{\mathcal{M}}_O  \ = \ \vec{OM} \wedge \vec{F}(M)

[modifier] Un théorème général

Supposons le système d'actions mécaniques représentable par un ensemble dénombrable de forces \vec{F}_i où l'indice \ i = 1, \cdots, n. Pour ce système d'actions mécaniques, le moment résultant est :

 \vec{\mathcal{M}}_O  \ = \ \sum_{i=1}^n \ \vec{\mathcal{M}}_i 
\ = \  \sum_{i=1}^n \ \vec{OM}_i \wedge \vec{F}_i(M_i)

Calculons alors le moment résultant par rapport à un autre point A :

 \vec{\mathcal{M}}_A \ = \  \sum_{i=1}^n \ \vec{AM}_i \wedge \vec{F}_i(M_i)

On écrit que chaque vecteur position se décompose comme suit :

 \vec{AM}_i \ = \ \vec{AO} \ + \ \vec{OM}_i

d'où le moment résultant :

 \vec{\mathcal{M}}_A \ = \  \sum_{i=1}^n \ \vec{AO} \wedge \vec{F}_i(M_i) \ + \  \sum_{i=1}^n \ \vec{OM}_i \wedge \vec{F}_i(M_i)

La seconde somme représente le moment résultant en O. De plus, dans la première somme, le vecteur  \vec{AO} est indépendant de l'indice i ; on peut donc le sortir de la somme et écrire :

 \sum_{i=1}^n \vec{AO} \wedge \vec{F}_i(M_i) \ = \ \vec{AO} \wedge \left[ \sum_{i=1}^n \vec{F}_i(M_i) \right]

La somme qui apparait n'est autre que la résultante des forces :

 \vec{R} \ = \ \sum_{i=1}^n \vec{F}_i(M_i)

d'où le théorème général :

 \vec{\mathcal{M}}_A \ = \ \vec{\mathcal{M}}_O \ + \ \vec{AO} \wedge \vec{R}

[modifier] Cas particulier du couple

Le couple étant un système d'actions mécaniques dont la résultante \vec{R} est nulle, son moment résultant est indépendant du point choisi pour le calculer :

 \vec{\mathcal{M}}_A \ = \ \vec{\mathcal{M}}_O

On utilise souvent la notation  \vec{\Gamma} pour représenter le moment résultant d'un couple. Compte-tenu du résultat précédent, il n'est en effet pas nécessaire de préciser le point choisi pour calculer le moment.

[modifier] Représentations d'un couple

Il existe une infinité de représentations différente d'un même couple  \vec{\Gamma} donné.

[modifier] Représentation la plus simple

La plus simple, qui lui donne son nom, consiste à considérer un ensemble de deux forces :


  • l'une, \vec{F}_1, appliqué en un point M1 différent de l'origine O fixée.


  • l'autre, \vec{F}_2 \ = \ - \ \vec{F}_1, appliqué en un point M2 symétrique du point M1 par rapport à l'origine O.


Ainsi, la résultante \vec{R} \ = \ \vec{F}_1 \ + \ \vec{F}_2 \ = \ \vec{0} est bien nulle. On suppose de plus que les vecteurs  \vec{F}_1 et  \vec{F}_2 ne sont pas colinéaires au vecteur  \vec{M_1M_2}  ; le cas le plus simple consiste à prendre les deux forces perpendiculaires à ce vecteur :

Si on note la distance  || \vec{OM}_1 || = || \vec{OM}_2 || = d , la norme des forces  || \vec{F}_1 || = || \vec{F}_2 || = F , et  \vec{u} le vecteur unitaire perpendiculaire au plan de la figure, le couple vaut explicitement :

 \vec{\Gamma} \ = \ 2 \ d \ F \  \vec{u}

[modifier] Exemples d'autres représentations

On peut représenter le même couple \vec{\Gamma} que dans l'exemple précédent par d'autres ensembles d'actions mécaniques. Par exemple, par deux forces :


  • l'une, \vec{F}_1, appliqué au point O .


  • l'autre, \vec{F}_2 \ = \ - \ \vec{F}_1, appliqué en un point M3 situé à une distance non nulle de l'origine O.


Ainsi, la résultante \vec{R} \ = \ \vec{F}_1 \ + \ \vec{F}_2 \ = \ \vec{0} est toujours nulle. Pour simplifier, on peut encore supposer que les vecteurs  \vec{F}_1 et  \vec{F}_2 sont perpendiculaires au vecteur  \vec{OM_3}  :


Pour retrouver la même valeur du couple :  \vec{\Gamma} \ = \ 2 \ d \ F \  \vec{u} , il suffit de prendre par exemple une combinaison du type :


  •  || \vec{OM}_3 || = d et :  || \vec{F}_1 || = || \vec{F}_2 || = 2F


  • ou :  || \vec{OM}_3 || = 2d et :  || \vec{F}_1 || = || \vec{F}_2 || = F


Il existe une infinité de représentations possibles ...

[modifier] Articles liés

Autres langues

Wikipedia HTML 2008 in other languages

100 000 +

Česká (Czech)  •  English  •  Deutsch (German)  •  日本語 (Japanese)  •  Français (French)  •  Polski (Polish)  •  Suomi (Finnish)  •  Svenska (Swedish)  •  Nederlands (Dutch)  •  Español (Spanish)  •  Italiano (Italian)  •  Norsk (Norwegian Bokmål)  •  Português (Portuguese)  •  Română (Romanian)  •  Русский (Russian)  •  Türkçe (Turkish)  •  Українська (Ukrainian)  •  中文 (Chinese)

10 000 +

العربية (Arabic)  •  Български (Bulgarian)  •  Bosanski (Bosnian)  •  Català (Catalan)  •  Cymraeg (Welsh)  •  Dansk (Danish)  •  Ελληνικά (Greek)  •  Esperanto  •  Eesti (Estonian)  •  Euskara (Basque)  •  Galego (Galician)  •  עברית (Hebrew)  •  हिन्दी (Hindi)  •  Hrvatski (Croatian)  •  Magyar (Hungarian)  •  Ido  •  Bahasa Indonesia (Indonesian)  •  Íslenska (Icelandic)  •  Basa Jawa (Javanese)  •  한국어 (Korean)  •  Latina (Latin)  •  Lëtzebuergesch (Luxembourgish)  •  Lietuvių (Lithuanian)  •  Latviešu (Latvian)  •  Bahasa Melayu (Malay)  •  Plattdüütsch (Low Saxon)  •  Norsk (Norwegian Nynorsk)  •  فارسی (Persian)  •  Sicilianu (Sicilian)  •  Slovenčina (Slovak)  •  Slovenščina (Slovenian)  •  Српски (Serbian)  •  Basa Sunda (Sundanese)  •  தமிழ் (Tamil)  •  ไทย (Thai)  •  Tiếng Việt (Vietnamese)

1 000 +

Afrikaans  •  Asturianu (Asturian)  •  Беларуская (Belarusian)  •  Kaszëbsczi (Kashubian)  •  Frysk (Western Frisian)  •  Gaeilge (Irish)  •  Interlingua  •  Kurdî (Kurdish)  •  Kernewek (Cornish)  •  Māori  •  Bân-lâm-gú (Southern Min)  •  Occitan  •  संस्कृत (Sanskrit)  •  Scots  •  Tatarça (Tatar)  •  اردو (Urdu) Walon (Walloon)  •  יידיש (Yiddish)  •  古文/文言文 (Classical Chinese)

100 +

Nehiyaw (Cree)  •  словѣньскъ (Old Church Slavonic)  •  gutisk (Gothic)  •  ລາວ (Laos)