Discuter:Démonstration
Un article de Wikipédia, l'encyclopédie libre.
Il faut définir un plan, car l'article part en live...
Proposition :
- Origine
Un chapitre qui décrit qui est à l'origine des démonstrations, et pourquoi (rappel : les grecs ont inventé la notion de démonstration, directement liée à la liberté de penser, fondement de la démocratie)...
- Définition
Définition actuelle
- Objectif
Hypothèse - Thèse - Démonstration : La démonstration valide l'hypothèse...
- Méthodes
Celles présentes dans l'article
- Applications
Cas concrets, liens vers des démonstrations classiques ...
Sommaire |
[modifier] Etat de l'article
Je trouve qu'actuellement l'article donne une approche surtout formelle de la démonstration mathématique (par exemple l'intro), ce qui est un peu réducteur. Je pense par exemple à ce que l'on trouve dans le livre de Lakatos "Preuves et réfutations", mais il faudrait d'autres sources.
Par ailleurs au sujet des équivalents Proof / démonstration, Preuve / evidence : "Proofs and refutations" a été traduit en 1984 par "Preuves et réfutations" ... Les équivalences ne sont probablement pas aussi simples que ce que dit la note actuelle dans l'article. Même s'il est très probable que l'on emploie maintenant "preuve" là où on aurait employé démonstration auparavant sous l'influence de l'anglais "proof". Proz (d) 30 décembre 2007 à 19:02 (CET)
- Je suis assez d'accord avec ce que tu dis, mais je sens incompétent dans ce domaine. En remaniant l'article, je n'ai fait essentiellement que de la remise en forme et je me suis contenté d'une phrase pour dire qu'il y avait d'autres acceptions du terme démonstration.
- En reformulant l'article, je n'ai pas touché à cette note sur l'anglicisme du mot "preuve".
- Pierre de Lyon (d) 31 décembre 2007 à 08:41 (CET)
- Pour le cas où quelqu'un reprendrait cette note, ajouter que le mot anglais demonstration signifie « manifestation » ou « présentation » (d'un produit) -- Fr.Latreille (d) 6 janvier 2008 à 18:45 (CET)
- Fait. Pierre de Lyon (d) 7 janvier 2008 à 15:34 (CET)
- Pour le cas où quelqu'un reprendrait cette note, ajouter que le mot anglais demonstration signifie « manifestation » ou « présentation » (d'un produit) -- Fr.Latreille (d) 6 janvier 2008 à 18:45 (CET)
Je ne me sens pas très compétent non plus. Quelques exemples seraient utiles, pour la "typologie" (des "vrais" exemples, pris dans la littérature). Je viens de corriger une intervention qui ne me semblait pas très heureuse sur le th. de Gödel, mais je dois dire que j'ai du mal à voir l'organisation de cet article pour le moment. Il faudrait probablement également parler de cohérence dès l'intro. Proz (d) 2 janvier 2008 à 23:25 (CET)
-
-
-
- Mais en français aussi démonstration a un sens voisin (manifestation, présentation d'un produit) ; Ca ne veut pas dire que c'est le seul. Je propose que l'article soit plutôt centré sur la notion de démonstration mathématique, donc on est hors sujet. Après vérifications dans quelques dictionnaires : "proof" et "demonstration" sont polysémiques en anglais comme en français, et cette note, en privilégiant des sens très particuliers est tout à fait trompeuse. Voyez ceci qui est pourtant minimaliste, http://www.m-w.com/dictionary/proof http://www.m-w.com/dictionary/demonstration. Proz (d) 8 janvier 2008 à 01:29 (CET)
-
-
[modifier] A propos de « démontrer »
Bien qu'elle soit épistémologiquement correcte, et appuyée par une note, l'expression « démontrer qu'une certaine assertion ne peut pas être démontrée » reste gênante. En fait, cela vient du fait qu'il y a au départ confusion entre la déductibilité d'une assertion et sa (valeur de) vérité. Il est entendu qu'un énoncé déductible dans une théorie est nécessairement vrai, mais la réciproque pose problème -- ce qui est évoqué plus loin à propos de l'incomplétude. On contournerait cette difficulté en présentant une théorie comme l'ensemble des énoncés déductibles des axiomes ; il suffirait alors de dire qu'on peut démontrer (montrer comme vrai) que certains énoncés n'appartiennent pas à la théorie (i.e. ne sont pas déductibles), ni leurs négations. Cela éviterait de poser la question en termes « est-ce que l'axiome du choix est vrai ? », et aurait en plus l'avantage de donner du sens au mot incomplétude. -- Fr.Latreille (d) 6 janvier 2008 à 18:45 (CET)
- Moi ça ne me gêne pas, c'est juste stylistique éventuellement, il s'agit bien de démonstrations dans les deux cas, formalisée dans le second, la note comme tu le remarques suffit. Mais je n'ai pas d'objection à "déduite" pour "démontrée" (voire "prouver" pour "démontrer" :) ). S'engager dans les théories comme ensembles de formules closes par déduction, c'est par contre orienter un peu trop l'article vers la logique mathématique. Proz (d) 8 janvier 2008 à 01:52 (CET)
- Je suis l'auteur de la note, que j'avais insérée par ce que j'avais les mêmes scrupules que Fr.Latreille, mais sur le reste je rejoins Proz. Pierre de Lyon (d) 8 janvier 2008 à 08:42 (CET)
[modifier] Démonstration (sacrée)
On peut lire dans la version actuelle (23 mai 2008 à 23:16) que une démonstration ne sera plus contestée, seules les hypothèses pourront être discutées.
En vertu de quoi une démonstration tient-elle ce caractère sactré selon lequel elle ne peut être contestée? Si l'on admet qu'une démonstration a pour finalité la validation d'une hypothèse, il est loisible alors de croire que cette validation peut se faire de différentes manières, par différentes méthodes. Une démonstration quelle qu'elle soit, peut par conséquent ne pas être unique et peut être contestée au moins dans sa pertinence.
Wikipedix (d) 26 mai 2008 à 21:18 (CEST)
- Il s'agit de démonstration en mathématiques. Je n'aurais pas idée de dire qu'elle a pour but la validation d'une hypothèse. Quand on la conteste, c'est qu'elle n'en est pas vraiment une, à la rigueur qu'elle a des hypothèses implicites que la contestation oblige à expliciter. J'ai l'impression que tu penses à autre chose qu'une démonstration mathématique. Proz (d) 26 mai 2008 à 22:48 (CEST)
- Wikipedix veut peut-être dire qu'une démonstration mathématique peut être contestée pour plusieurs raisons:
-
- elle est trop longue,
- elle utilise des détours qui n'ont rien à voir avec l'énoncé: typiquement les démonstrations de théorie des nombres qui font appel aux nombres complexes.
- elle n'éclaire pas la nature même du problème, je pense aux preuves géométriques en combinatoire (pour prouver une identité en combinatoire une belle preuve est celle qui exhibe une bijection),
- elle n'a pas été vérifiée par ordinateur,
- elle aurait pu être faite dans une théorie logique plus faible (sans tiers exclus ou sans existentiel constructif ou sans l'axiome du choix).
-
- Pierre de Lyon (d) 27 mai 2008 à 10:11 (CEST)
- Wikipedix veut peut-être dire qu'une démonstration mathématique peut être contestée pour plusieurs raisons:
Si c'est bien ça, j'ai mal compris, c'est 'contester" que je n'ai pas compris comme ça. Qu'une démonstration puisse être correcte mais pour des tas de raisons considérée comme maladroite, ou pas intéressante, entièrement d'accord bien-sûr, et il faudrait probablement le dire quelque part. L'idée exprimée dans l'introduction, me semble à garder (une démonstration reconnue comme correcte n'est plus contestée en tant qu'argumentation). Proz (d) 27 mai 2008 à 21:52 (CEST)
[modifier] Sacrée Démonstration
Les modifications que j'ai faites dans la version du (23 mai 2008 à 08:58) sont motivées par le souci de présenter une définition encyclopédique, qui explique simplement son utilité en mathématiques (évidemment).
Il est dit dans la version actuelle (23 mai 2008 à 23:16) qu'une démonstration "permet d'établir des assertions". A mon avis, ce n'est pas ce qu'on attend d'une démonstration, une démonstration a pour fonction première la validation d'une proposition, qui une fois validée (démontrée) sera tenue pour vraie. On peut la contester parce qu'il est tout à fait permis d'en douter, mais on ne peut la remettre en cause que par une autre démonstration qui invalide la première.
La conjecture de Poincaré a gardé depuis 1904 le statut de conjecture ou proposition (non validée) jusqu'en 2003, date à laquelle G. Perelman démontra (valida) la dite conjecture. Wikipedix (d) 28 mai 2008 à 11:44 (CEST)
- Plutôt que « contester », ne devrait-on pas plutôt dire que l'on « invalide » ou « réfute » une démonstration. Pierre de Lyon (d) 28 mai 2008 à 16:44 (CEST)
- Lorsque l'on émet une réserve à propos d'une démonstration, cela peut se faire à des degrés divers. Une démonstration peut être correcte mais peut être par exemple inélégante ou comme tu l'as dit dans ta première intervention trop longue. La réserve/contestation concerne dans ce cas la forme de la démonstration. Mais réfuter une démonstration c'est nier la vérité que la dite démonstration est sensée apporter. La réfutation équivaut au rejet de la démonstration.Wikipedix (d) 28 mai 2008 à 22:56 (CEST)
Je ne vois pas du tout comment une nouvelle démonstration peut en invalider une autre (c'est que ça n'en était pas une, bien sûr il existe des "démonstrations" considérées à tort comme correctes un temps, des démonstrations qui s'avèrent finalement démontrer autre chose que ce qu'elles étaient sensées démontrer, mais c'est un paragraphe d'introduction, ne cherchons pas à tout dire).
Sans être adepte forcené du formalisme, il me semble aussi que parler de "vrai" n'éclaircit pas. Proz (d) 29 mai 2008 à 00:15 (CEST)
- Bien sûre que pour un même problème, on peut trouver des démonstrations qui aboutissent à des solutions contradictoires et qui s'invalident mutuellement.
- Exemple: une équation dans l'ensemble des réels peut ne pas avoir de solutions, alors que dans un autre corps comme les complexes par exemple, elle peut en avoir plus d'une.
- Ceci n'est qu'un détail, mais l'essentiel à mon avis c'est la définition actuelle donnée à démonstration que je trouve incomplète d'un point de vue pédagogique mais aussi encyclopédique.Wikipedix (d) 30 mai 2008 à 09:38 (CEST)
-
- Bonjour,
- "une équation dans l'ensemble des réels peut ne pas avoir de solutions, alors que dans un autre corps comme les complexes par exemple, elle peut en avoir plus d'une" n'est pas un énoncé contradictoire.
- Peut-être ce que vous ne voyez pas Wikipedix c'est que tout du moins en mathématique, lorsque l'on dit que l'on démontre un énoncé E, c'est une abréviation pour dire : on démontre à partir de la théorie T (hypothèses) et de la logique L (axiomes et règles d'inférences) l'énoncé E. L'abréviation s'utilise lorsque le contexte permet de savoir ce que sont T et L.
- Et on peut très bien avoir deux théories T1 et T2, telles que T1 démontreL E et T2 démontreL nonE; cela ne veut pas dire que ces démonstrations sont contradictoires, mais que ces deux théories, elles, le sont. Peut-être est-ce ce que vous vouliez souligner.
- Maintenant si on a 1. T démontreL E et 2. T démontreL nonE, c'est que forcément une des 2 démonstrations est tout simplement fausse (une erreur a été faite). Ce qui ne veut pas dire que ces démonstrations sont contradictoires, mais que l'affirmation (métalinguistique) que ce sont bien des démonstrations est fausse. Ou alors, comme le dit justement Proz ci-dessous, T est incohèrente; là je supposais implicitement sa cohèrence --Epsilon0 ε0 31 mai 2008 à 22:46 (CEST)
- Aussi, comme déjà souligné, bien sûr que si on a une démonstration de E dans L à partir de T, il y en a une infinité +- astucieuses, économes, etc, mais ce n'est nullement contradictoire.
- --Epsilon0 ε0 30 mai 2008 à 21:35 (CEST)
On a un problème de vocabulaire j'ai l'impression, d'accord en gros avec epsilon0. Pour moi deux démonstrations de propositions contradictoires dans la même théorie, c'est que la théorie est incohérente (donc sans intérêt). En parlant de vérité comme tu le faisais (après tout, j'ai peut-être écrit trop vite au dessus, c'est peut-être un vocabulaire plus accessible, donc pourquoi pas, mais en étant soigneux, pas de vérité "en général" ?), tes modifications rendaient m'a-t-il semblé moins claires ce que tu dis justement au dessus. Par ailleurs je suis tout à fait d'accord sur le fait que l'article, et même l'introduction, sont très incomplets, même si je n'ai pas compris précisément ce que tu reproches à cette définition. Proz (d) 30 mai 2008 à 22:27 (CEST)
PS. Je propose déjà, pour simplifier, de laisser tomber les systèmes de déduction et leur correction dans l'introduction. Proz (d) 30 mai 2008 à 22:32 (CEST)
- Je reconnais que la phrase « et, en admettant que le système de déduction soit correct, une démonstration ne sera plus contestée, seules les hypothèses pourront être discutées » est un peu alambiquée et je crois en être à l'origine pour améliorer un phrase incorrect antérieur. Pour moi, une introduction doit être la plus courte, la plus simple et la plus directe possible. Je suis donc favorable à la suppression de ce bout de phrase. Pierre de Lyon (d) 31 mai 2008 à 10:19 (CEST)
[modifier] Difficile démonstration
Désolé, mais j'estime que la qualité pédagogique de cet article (version 1 juin 2008 à 07:55)demeure en deçà des standards encyclopédiques.
Pour le néophyte qui veut savoir et comprendre ce qu'est une démonstration en quelques mots, voilà ce que cet article propose "une démonstration permet d'établir une assertion" et quand il clique sur assertion, on lui dit ceci:" une assertion représente un énoncé considéré ou présenté comme vrai". Si j'ai bien compris, une démonstration permet d'établir un énoncé déjà considéré comme vrai.
Qu'est ce que permet d'établir veut dire? Cela n'est pas clair et peut conduire à la confusion.
Pour moi une démonstration valide une proposition (ou énoncé ou assertion) et c'est cette validation qui lui donne le statut de vérité immuable (voir l'exemple de la conjecture de Poincaré ci dessus). Pour la comparaison, c'est cette idée qui se dégage de proof pour le Wikipedia anglosaxon.
Je fais abstraction des diverses imperfections linguistiques comme celle-ci: "à partir de propriétés admises, ou précédemment démontrées à partir de celles-ci", que l'on trouve au début de l'article. Wikipedix (d) 1 juin 2008 à 11:24 (CEST)
- Il faudrait s'occuper de l'article assertion, qui contient déjà une énormité sur le tiers-exclu, et dont le contenu est très peu fiable, une assertion pour moi c'est le fait d'affirmer un énoncé (ou qu'un énoncé se déduit d'autres). Sur le fond (laissons tomber les "standards encyclopédiques" et essayons déjà d'améliorer), Si tu reproches à la définition de ne pas être précise, tu as raison, c'est assez inévitable dans l'introduction. Je ne prétend pas non plus qu'elle est satisfaisante. Il y a deux approches, l'une par la vérité, l'autre par le respect de "formes" (règles). Il faudrait que les deux apparaissent. Le vocabulaire "assertion", "établir", à l'avantage de ne pas engager, mais il semble prêter à ambiguïté. Proz (d) 1 juin 2008 à 18:42 (CEST)